Non-autonomous maximal regularity for fractional evolution equations
نویسندگان
چکیده
We consider the problem of maximal regularity for semilinear non-autonomous fractional equations $$\begin{aligned} B^\alpha u(t)+A(t)u(t)=F(t,u),\, t \text {-a.e}. \end{aligned}$$ Here $$B^\alpha $$ denotes Riemann–Liouville derivative order $$\alpha \in (0,1)$$ w.r.t. time and time- dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space $${\mathcal {H}}.$$ prove $$L^p$$ -regularity results other properties solution above equation under minimal assumptions inhomogeneous term F.
منابع مشابه
Maximal Regularity for Evolution Equations Governed by Non-Autonomous Forms
We consider a non-autonomous evolutionary problem u̇(t) + A(t)u(t) = f(t), u(0) = u0 where the operator A(t) : V → V ′ is associated with a form a(t, ., .) : V × V → R and u0 ∈ V . Our main concern is to prove well-posedness with maximal regularity which means the following. Given a Hilbert space H such that V is continuously and densely embedded into H and given f ∈ L(0, T ;H) we are interested...
متن کاملMaximal Lp-Regularity for Stochastic Evolution Equations
We prove maximal L-regularity for the stochastic evolution equation
متن کاملMaximal regularity for nonautonomous evolution equations
We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. 1991 Mathematics Subject Classification. 35K90, 47D06.
متن کاملMaximal L-regularity for Stochastic Evolution Equations
We prove maximal Lp-regularity for the stochastic evolution equation{ dU(t) +AU(t) dt = F (t, U(t)) dt+B(t, U(t)) dWH(t), t ∈ [0, T ], U(0) = u0, under the assumption that A is a sectorial operator with a bounded H∞calculus of angle less than 1 2 π on a space Lq(O, μ). The driving process WH is a cylindrical Brownian motion in an abstract Hilbert space H. For p ∈ (2,∞) and q ∈ [2,∞) and initial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Evolution Equations
سال: 2022
ISSN: ['1424-3199', '1424-3202']
DOI: https://doi.org/10.1007/s00028-022-00808-4